1,995 research outputs found

    Non-circular rotating beams and CMB experiments

    Get PDF
    This paper is concerned with small angular scale experiments for the observation of cosmic microwave background anisotropies. In the absence of beam, the effects of partial coverage and pixelisation are disentangled and analyzed (using simulations). Then, appropriate maps involving the CMB signal plus the synchrotron and dust emissions from the Milky Way are simulated, and an asymmetric beam --which turns following different strategies-- is used to smooth the simulated maps. An associated circular beam is defined to estimate the deviations in the angular power spectrum produced by beam asymmetry without rotation and, afterwards, the deviations due to beam rotation are calculated. For a certain large coverage, the deviations due to pure asymmetry and asymmetry plus rotation appear to be very systematic (very similar in each simulation). Possible applications of the main results of this paper to data analysis in large coverage experiments --as PLANCK-- are outlined.Comment: 13 pages, 9 figures, to appear in A&

    Self-consistent Green's functions calculation of the nucleon mean-free path

    Get PDF
    The extension of Green's functions techniques to the complex energy plane provides access to fully dressed quasi-particle properties from a microscopic perspective. Using self-consistent ladder self-energies, we find both spectra and lifetimes of such quasi-particles in nuclear matter. With a consistent choice of the group velocity, the nucleon mean-free path can be computed. Our results indicate that, for energies above 50 MeV at densities close to saturation, a nucleon has a mean-free path of 4 to 5 femtometers.Comment: 5 pages, 4 figures. Minor changes, bibliography corrected. Accepted version in Phys. Rev. Let

    Spin wave excitations in low dimensional systems with large magnetic anisotropy

    Full text link
    The low energy excitation spectrum of a two-dimensional ferromagnetic material is dominated by single-magnon excitations that show a gapless parabolic dispersion relation with the spin wave vector. This occurs as long as magnetic anisotropy and anisotropic exchange are negligible compared to isotropic exchange. However, to maintain magnetic order at finite temperatures, it is necessary to have sizable anisotropy to open a gap in the spin wave excitation spectrum. We consider four real two-dimensional systems for which ferromagnetic order at finite temperature has been observed or predicted. Density functional theory calculations of the total energy differences for different spin configurations permit us to extract the relevant parameters and connect them with a spin Hamiltonian. The corresponding values of the Curie temperature are estimated using a simple model and found to be mostly determined by the value of the isotropic exchange. The exchange and anisotropy parameters are used in a toy model of finite-size periodic chains to study the low-energy excitation spectrum, including single-magnon and two-magnon excitations. At low energies we find that single-magnon excitations appear in the spectrum together with two-magnon excitations. These excitations present a gap that grows particularly for large values of the magnetic anisotropy or anisotropic exchange, relative to the isotropic exchange.Comment: 11 pages, 3 figures, 2 table

    Role of elastic scattering in electron dynamics at ordered alkali overlayers on Cu(111)

    Full text link
    Scanning tunneling spectroscopy of p(2x2) Cs and Na ordered overlayers on Cu(111) reveals similar line widths of quasi two-dimensional quantum well states despite largely different binding energies. Detailed calculations show that 50% of the line widths are due to electron-phonon scattering while inelastic electron-electron scattering is negligible. A frequently ignored mechanism for ordered structures, i.e., enhanced elastic scattering due to Brillouin zone back folding, contributes the remaining width.Comment: 4 pages, 2 figures, 1 tabl

    Microwave Background Anisotropies and Nonlinear Structures I. Improved Theoretical Models

    Full text link
    A new method is proposed for modelling spherically symmetric inhomogeneities in the Universe. The inhomogeneities have finite size and are compensated, so they do not exert any measurable gravitational force beyond their boundary. The region exterior to the perturbation is represented by a Friedmann-Robertson-Walker (FRW) Universe, which we use to study the anisotropy in the cosmic microwave background (CMB) induced by the cluster. All calculations are performed in a single, global coordinate system, with nonlinear gravitational effects fully incorporated. An advantage of the gauge choices employed here is that the resultant equations are essentially Newtonian in form. Examination of the problem of specifying initial data shows that the new model presented here has many advantages over `Swiss cheese' and other models. Numerical implementation of the equations derived here is described in a subsequent paper.Comment: 10 pages, 4 figures; Monthly Notices of the Royal Astronomical Society (MNRAS), in pres

    Acquired Cold Urticaria: Clinical Features, Particular Phenotypes, and Disease Course in a Tertiary Care Center Cohort

    Get PDF
    BACKGROUND: Data about special phenotypes, natural course, and prognostic variables of patients with acquired cold urticaria (ACU) are scarce. OBJECTIVES: We sought to describe the clinical features and disease course of patients with ACU, with special attention paid to particular phenotypes, and to examine possible parameters that could predict the evolution of the disease. METHODS: This study was a retrospective chart review of 74 patients with ACU who visited a tertiary referral center of urticaria between 2005 and 2015. RESULTS: Fourteen patients (18.9%) presented with life-threatening reactions after cold exposure, and 21 (28.4%) showed negative results after cold stimulation tests (classified as atypical ACU). Nineteen patients (25.7%) achieved complete symptoms resolution at the end of the surveillance period and had no subsequent recurrences. Higher rates of atypical ACU along with a lower likelihood of achieving complete symptom resolution was observed in patients who had an onset of symptoms during childhood (P < .05). In patients with atypical ACU, shorter disease duration and lower doses of antihistamines required for achieving disease control were detected (P < .05). Age at disease onset, symptom severity, and cold urticaria threshold values were found to be related to disease evolution (P < .05). LIMITATIONS: This study was limited by its retrospective nature. CONCLUSIONS: The knowledge of the clinical predictors of the disease evolution along with the clinical features of ACU phenotypes would allow for the establishment of an early and proper therapeutic strategy

    CMB anisotropy: deviations from Gaussianity due to non-linear gravity

    Get PDF
    Non-linear evolution of cosmological energy density fluctuations triggers deviations from Gaussianity in the temperature distribution of the cosmic microwave background. A method to estimate these deviations is proposed. N-body simulations -- in a Λ\LambdaCDM cosmology -- are used to simulate the strongly non-linear evolution of cosmological structures. It is proved that these simulations can be combined with the potential approximation to calculate the statistical moments of the CMB anisotropies produced by non-linear gravity. Some of these moments are computed and the resulting values are different from those corresponding to Gaussianity.Comment: 6 latex pages with mn.sty, 3 eps figures. Accepted in MNRA

    Role of the electric field in surface electron dynamics above the vacuum level

    Get PDF
    Scanning tunneling spectroscopy (STS) is used to study the dynamics of hot electrons trapped on a Cu(100) surface in field emission resonances (FER) above the vacuum level. Differential conductance maps show isotropic electron interference wave patterns around defects whenever their energy lies within a surface projected band gap. Their Fourier analysis reveals a broad wave vector distribution, interpreted as due to the lateral acceleration of hot electrons in the inhomogeneous tip-induced potential. A line-shape analysis of the characteristic constant-current conductance spectra permits to establish the relation between apparent width of peaks and intrinsic line-width of FERs, as well as the identification of the different broadening mechanisms.Comment: 7 pages, 4 figures, to appear in Phys. Rev.

    Microwave background anisotropies and non-linear structures II. Numerical computations

    Full text link
    A new method for modelling spherically symmetric inhomogeneities is applied to the formation of clusters in an expanding Universe. We impose simple initial velocity and density perturbations of finite extent and we investigate the subsequent evolution of the density field. Photon paths are also calculated, allowing a detailed consideration of gravitational lensing effects and microwave background anisotropies induced by the cluster. We apply the method to modelling high-redshift clusters and, in particular, we consider the reported microwave decrement observed towards the quasar pair PC1643+4631 A&B. We also consider the effect on the primordial microwave background power spectrum due to gravitational lensing by a population of massive high-redshift clusters.Comment: 15 pages, 23 figures; Monthly Notices of the Royal Astronomical Society (MNRAS), in pres
    corecore